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ABSTRACT

This paper discusses some of the problems encountered
in the design of discrete-time stochastic controllers for
problems that may adequately be described by the "LQG"
assumptions; namely, the problems of obtaining acceptable
relative stability, robustness, and disturbance rejection
properties. The paper proposes a dynamic compensator to
replace the optimal full state feedback regulator gains at
steady state, provided that all states are measurable. The
compensator increases the stabiiity margins at the plant
input, which may possibly be inadequate in practical
applications. Though the optimal regulator has desirable
properties the observer based controller as implemented with
a Kalman filter, tn a noisy environment, has {nadequate
stability margins. The proposed compensator is designed to
match the return difference matrix at the plant input to that
of the optimal regulator while maintaining the optimality of
the state estimates as dictated by the measurement nofse

characteristics.
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I. INTRODUCTION

The design of robust stochastic controllers for
problems adequately described by the "LQG" assumptions has
been a field of active research in recent years. Since
Dovle’s [1] and Doyle and Stefn’s [2] introductory papers
different approaches have been taken in order to design
various robust LQG controllers. It can be stated generally
that the approaches taken were to increase the stabflity
margins, namely the gain and phase margins at the plant
input, sufficiently so that the closed loop system remained
stable under large parameter changes in the plant and/or
sensor failures. It is important to note at this point that
most research has been on continuous time systems. The
robustness problem may be more pronounced in discrete time
controllers due to sampling rate limitations and the phase
lag associated with sampl ing.

In order to have a better understanding of the problem
it s necessary to briefly review the respective parts of the
stochastic controlter. The stochastic LQG controller is
comprised of the LQ optimal feedback controller and the
Kalman filter based current full state observer. It has been
well established that the continuous time LQ controller based
system has excellent guaranteed stability margins, namely a
phase margin of at least 60° and an infinite gain margin.
Unfortunately the discrete time equivalent doesn’t have these
guaranteed margins. However as the sampl ing period
approaches zero the stability margins approach those that of

the continuous time LQ controtiler. The Kalman filter will




show an excellent performance in estimating states and will
also be stable. However when the Kalman filter is used to
estimate the state variébles for feedback to the LQ
controller the robustness properties of the system will not
be guaranteed. Doyle has given a simple example where a LQG
controller-fiiter combination has very small gain margins,
and hence is not robust. An fnvestigation of the paper by
Johnson [3] explains this behavior of the LQG controllers.

Consider the state space representation of a plant for
which a LQG controller is to be designed.

x{(k+1)

Ax(k) + Bu(k) + Gw(k)
(1)

y(k) Cx(k) + v(k)
where
x(k)eR™ , u(k)eR” , y(k)eR™
and w(k) and v(k) are uncorrelated, zero mean white gaussian
noise processes.

Denoting the constant Kalman filter gains by KF and the
constant (Q gains by Kc we consider the discrete time
equivalent of Theorem 8.3 as stated in the monograph by
O‘’Reilly ([4].

Theorem : There exists a class of linear systems ( 1 ) such
that one or more etgenvalues of (I - KFC)(A - BKC) of the
observer based feedback controllier may lie outside of the
unit circle in the complex plane though all eigenvalues of (A
- BKC) and all the eigenvalues of (A - KfCA) are designed to
lie within the unit circle, and even though the system pairs

(A,B) , (A,C) are, respectively completely controllable and

completely observable.
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The significance of this theorem lies in the fact that
although the closed loop efgenvalues of the LQG system are
the wunion of the observer eigenvalues and optimal regulator
eligenvalues, and hence result in a stable closed loop system,
the efgenvalues of the controller may lie outside the unit
circle, therefore causing the controller to be unstable. It
may therefore be concluded that the LQG control system may
not be robust.

There have been three major approaches in alleviating

the robustness problem that may occur in LQG systems. In
11{ght of the theorem all three methods will be investigated
fn the same frame work. The first approach ts that of Doyle
and Stein [2]. They developed a robustness recovery

procedure in which they added fictitious process noise at the
plant f{nput. By controlling the way the fictitious noise
entered the plant input they recovered the loop transfer
function (LTR) at the plant input asymptotically as the noise
Intensity is fincreased. This method has the drawback that
the system has to be square. A recent paper by Madiwale and
Willtams [5] has extended the LTR procedure to minimum phase,
non-square and left-invertable systems with full or reduced
order observer based LQG designs. It is observed that the
LTR method actually results in the Kalman filter gains being
forced asymptotically into a region where all efgenvalues of
the controller lie within the unit circle. The major problem
in this method Is that the Kalman filter is no longer optimal
with respect to the true disturbances on the plant as its

efgenvalues have been shifted via the effective adjustment on




the process nofise . Another disadvantage is that the 40
dB/decade roll-off associated with the LQG design is pushed
out into the high frequency range where unmodelled high
frequency modes might be excited and cause instability.

The second approach which was inttiated by Gupta (6],
and by Moore et al [7] in separate papers was to achieve
robustness {n frequency bands where the problems occurred
without changing the closed-loop characteristics outside
those frequency bands. Gupta used frequency-shaped cost
functionals to achieve robustness by reducing filter gain
outside the model bandwidth. On the other hand Moore et al
[7] essentially improvised on Doyle and Stein’s LTR method by
adding fictitious colored nofse instead of white noise to the
procéss input, thereby relocating both the Kalman filter
eigenvalues and the controller eigenvalues. Recently
Anderson et al [8] have investigated the relations between
frequency dependent control and state weighting In LQG
problems. Both of these procedures result 1in controller
eigenvalues that 1lie within the unit circle, thereby

overcoming the problems stated in the theorem.

The last approach is due to Okada et al [ol. Theifr
approach is drastically different from the previous
approaches. They have changed the structure of the LQG

controller by introducing a feed-forward path from the
controller input to the controller output. This is
equivalent to introducing an addftional feedback loop from
the output to the input of the plant. The criteria for the

selection of the gains in this path {s to force the
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controller to satisfy the circle criterion. This additional
loop results {n a robust controller with poor response
properties. Therefore the response s fmproved by
synthesizing an extended perfect model-following (EMPF)
system [9]. This approach has the disadvantage that f{ts
statistical properties haven’t been established. Furthermore
it is not always applicable theoretically. However, in
practice it outperforms Doyle and Stefn’s LTR method with
some approximations as described in [9].

The approach taken in this paper is an extension of the
LTR procedure. A dynamic compensator {s proposed to replace
the optimal feedback gains so as to recover the open loop

transfer function at the plant input.

II. DERIVATION OF THE DYNAMIC COMPENSATOR

The LQ optimal controller can be designed for a system as

described by equatfons (t) provided that all states are
available for measurement. The resulting steady state
controller which is depicted in Ffgure | will have excellent

properties as mentioned previously.

+ X(k)

r(k)——-ﬁ):)_—-xx——-x——u B (z1 - a)~! C —=vik)

K
c

FIGURE 1. The LQ Based Optimal Controller
The optimal control for this system is described by the
following equation.

u(k) = —ch(k) (2)




In the case that the state measurements are corrupted
by white gaussifan noise an LQG controller can be designed in
which the Kalman filter is used to estimate the states. The
LQG design results in the following controller equations for
the infinite horizon problem.

The Kalman filter is described by
(k1) = Ax(K)+Bu(K)+K_[y(Kk+1)-CAX(K)=CBU(K)] (3)
and the optimal control is described by
uk) = -K_x(K) (4)

Figure 2 depicts the LQG system.

+ X(k)

r(k)—(%}——xx * B (z1 - Ay~ ! c vi(k)

-1
K. z (1-K.C)B
|

;(k) 1 +/1\+ +
z(zl - A) Oy K

2 lca

FIGURE 2. The LQG Based Optimal Controller/Observer

The following three properties of the system have been
established :

Pl1: The closed loop transfer function matrices from r(k) to
x(k) are identical in both the LQG and LQ systems.

P2: The loop transfer function matrices with the loops broken
at XX are tidentical in both implementations.

P3: The loop transfer function matrices with the loops broken
at X are generally different. Furthermore the LQG open-loop

system might possibly have wunstable poles.
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The return difference ratios of the LQG and LQ systems are

given by the following expresstions.

1 1

Tiqg(Z) = ZK _[21-(1-K C)A+(1-K_C)BK 1" 'K C(zI1-A)" 'B (5)

T q(@) = K (z1-m)7 '8 (6)
Now define

A(Z) = T aq(2) = T (2) (7)

It is now proposed to replace the constant optimal feedback
gains Kc by a dynamic system ¥(z) in the LQG system and solve

for it as A(z) approaches zero pointwise in =z.

A(2Z) T‘qg(z)l - Mg =0 (8)

KC=W(2)

1 1

A(z) B

zV(z)[zl-(l-KFC)A+(l-KFC)BW(z)]- KFC(ZI—A)—

- KC(zI—A)"‘B =0 (9)

1

l - —-—
KC-K }(zI-A) "B =0 (10)

(z¥(z2)[Z1-(1-K C)A+(1-K_C)B¥(2)]~
Since (zI-A)"!B # 0 equation (9) becomes

-1
zv(z)[zl-(l-KFC)A+(I-KFC)BW(Z)] KFC—KC =0 (11)
To solve for ¥(z) it is necessary to assume that det(KFC)#O.
This Implies that the number of outputs should be equal to

the number of states f.e. m = n. Equation (10) then becomes

-1 -1 _
{ZW(Z)[ZI-(I—KFC)A+(I—KFC)B?(Z)] _KC(KFC) }KFC =0 (12)
or

—(1- - -1 _ -1 _
z¥(z)[(zI-(1] KFC)A+(I KFC)BW(Z)] Kc(KFC) =0 (13)

1

(z¥(2)-K_(KC) " [ZI-(1-K C)A+(1-K C)BY(2)]} *

1

]
o

[Z1-(1-K C)A+(I-K_C)BY¥(2)]1~ (14)




1

- -1 .
{ZW(Z)-KC(KFC) [ZI-(I—KFC)A]—KC(KFC) (I-K C)BY¥(Z)}

[zl—(I—KFC)A+(I—KFC)B?(2)]—1 =0 (15)

A(zZ) = {[zI—Kc(KFC)_l(I-KFC)B]W(Z)
- KC(KFC)_I[ZI—(I-KFC)A]} .
((Z1-(1-K_C)A+(1-K_C)B¥(2) 1 'K .C) *
(zi-a)"'b = 0 (16)
Therefore, if
¥(z) = [zI-K_(K.0) 1 (1-k C)B1 'K_(K.C) ' [z1-(1-k ©)A]  (17)

Then A(z) = 0.

I11. OBSERVATIONS

Before an example can be presented to demonstrate the
effect of the dynamic compensator the following observations
must be stated. Several problems are encountered 1in the
design of the dynamic compensator. The major problem is the
dependence of the compensator coefficients on the Kalman
filter gains. Many of the problematic systems that were
fnvestigated, f.e. those with unstable controllers, result fin
extremely high compensator gains, and large, hence unstable,
compensator poles. The reason for this behavior is observed
to be the high condition numbers associated with KF and KFC'
Because of this high condition number the matrix (Kf_.C)_l has
extremely targe entries, which in turn result fn large poles
and compensator gains.

A system similar to the one investigated by Doyle and
Stein (2], chosen specifically to 1{llustrate the unstable

controller poles, resulted in extremely high compensator

gains, and Jlarge unstable poles. Although the compensator
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recovered the stability margins at the plant input of the LQG
system it 1s not an acceptable compensator. In an attempt to
find a physically realizable compensator several systems have
been tested. Those that result in a realizable compensator
have the properties that, the matrices mentioned previously
have low condition numbers, and the controller eigenvalues
are all within the unit circle. Since the controller Iis
stable the low phase and gain margins assocfated with the
problematic LQG systems are not observed, and the dynamic
compensator does not have a pronounced effect to validate its

use in practical systems.

IV. AN EXAMPLE

To illustrate the effects of the dynamic compensator on
the stability margins of the open loop frequency response the
following example was considered.

Let the plant be described by the following state equation :

1.0 0.005 1.25E-5S
x(k+l) = x(k) + ] u(k)

-0.015 0.98 0.005
0.18
+ w(k) (18)
-0.3
2.0 1.0 1.0 0.0
y(k) = x(k) + v(k)
0.0 0.3648 0.0 1.0

With E{w(k)}=E{v(k)}=0 3 E{w(1)w(])}=E{v(T)v(])}=2006,
The controller is :
u(k)= - [ 50.0 10.0 ] x(Kk)

The state estimates are described by equation (3), where the
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Kalman filter gains are gfven by,

K. =

.F

0.0827901406 -0.13645879
' (19)

-0.13430101 0.223924574

The compensator as obtafined from equation (17) is

(z - 0.85914)

¥(z) = [ 357.546
(z - 0.125149)

34.2609

(z - 0.73884)
(20)

(z - 0.125149)

To fnvestigate the effect of the compensator on the system,
the open loop frequency responses of the system are
determined at both of the breakpoints deffined previously. In
Figure 3 the Nyquist plots of the system with the constant LQ
gains are depicted. The Nyquist plots of Figure 4 are those
of the system with the dynamic compensator. As seen, even
though there 1is a slight increase in the phase margin the
difference 1{s not significant. Also the system exhibits an
unexpected behavior at high frequencies which decreases the
gatn margin.

To observe the effect of the compensator on system

robustness the plant was perturbed to be

1.0 0.1 1.25E-5
x(k+1) = [ x(k) + [ u(k)
~0.2 0.9 0.005
0.18
+ w(k) (21)
-0.3
2.0 1.0 1.0 0.0
y(k) = ] x(k) + v(k)
0.0 0.3648 0.0 1.0
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The Nyquist plots of Figures 5 and 6 as obtained for
the open loop responses of the system with and without the
dynamic compensator indfcate that the effect s not
stgnificant, but that there is definitely an improvement. As
seen from Figure 6 there is an improvement in both the gain
and phase margins,at the plant input, §i.e., the loop breaking
point XX. However at point X there is a decrease in the gain
margin while a slight increase fn the phase margin was noted.

The following example demonstrates the fact that
although the compensator designed for the system 1is not
practically acceptable it recovers the stability margins at
the plant input of the LQG system. The plant is the same as
the one given in (18) with the C matrix chosen to result in
an unstable controller. The plant output is decribed by the

following equation :

2.0 1.0 1.0, 0.0
y(k) = [ x(K) + [ | v (k) (22)
0.0 0.1 0.0 1.0

The Kalman filter gains for this system are given by,

0.143435809 -0.0624081382
KF = (23)
-0.23095458 0.10172081836
The compensator is described by,
(z - 0.99095002)
Y(z) = -181195.7489
(z + 565.52065)
(z - 0.98813697)
-112641.206 (20)
(z + 565.52065)

The Nyquist plots of the system, with and without the

compensator are depicted f{n Figures 7 and 8. As seen from

428




Figure 8 the LQ open-loop frequency response s recovered at
the plant input,fi.e. at point X, when the compensator is
used. However the extremely large gains of the compensator
drastically change the frequency response of the system with

the loop opened within the controller,at potnt XX.

V. CONCLUSION

As seen from the results described above, the dynamic
compensator that was designed to mimic the return difference
of the LQ system at the plant input of the LQG system did
result in the anticipated fimprovement In the stability
margins at the plant input. An appreciable improvement fis
observed for the LQG system with the unstable controlier,
though there s no longer any guaranteed stabflity margins at
the l1oop opening point within the controller,i.e. at point
XX. The same magnitude of improvement is not seen for systems
with stable controllers. However, an fincrease in the phase
margins {s observed when the plant model s perturbed.
Further research may be directed towards investigating why a
realizable compensator can not be obtained for all systems
which have unstable controllers,and hence 1low stability
margins, especially for systems that do not have the same
number of states and outputs. Also an investigation of the
effects of the compensator on the time response of the system

must be performed.
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b)Loop point XX

a)Loop point X

With Dynamic

LQG System Frequency Response
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(Unstable Controltler)
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